Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.901
Filtrar
1.
J Behav Addict ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656807

RESUMEN

Background and aims: Compulsivity contributes to the development and maintenance of multiple addictive disorders. However, the relationship between compulsivity-related cognitive features and problematic usage of the internet (PUI), an umbrella term for various internet use disorders/interfering behaviors, remains largely unclear, partly due to the multidimensional nature of compulsivity. This scoping review utilized a four-domain framework of compulsivity to consider this topic and aimed to summarize available evidence on compulsivity-related neuropsychological characteristics in PUI based on this framework. Methods: A systematic literature search was conducted by applying the combination of search term to the search engines of PubMed, PsycINFO and Web of Science. A four-domain framework of compulsivity, involving cognitive flexibility, set-shifting, attentional bias, and habit learning, was used to consider its complex structure and frequently used tasks. Main findings in related PUI studies were summarized based on this framework. Our secondary aim was to compare compulsivity-related features between different PUI subtypes. Results: Thirty-four empirical studies were retained, comprising 41 task-results and 35 independent data sets. Overall, individuals with PUI showed more consistent deficits in attentional biases and were relatively intact in set-shifting. Few studies have examined cognitive flexibility and habit learning, and more evidence is thus needed to establish reliable conclusions. Moreover, most studies focused on internet gaming disorder, whereas other PUI sub-types were not sufficiently examined. Conclusion: This systematic review highlights the use of the four-domain framework for advancing understanding of mechanisms underlying compulsivity in PUI. Related therapeutic implications and future directions are discussed.

2.
Plant Sci ; : 112106, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38663480

RESUMEN

PXY (Phloem intercalated with xylem) is a receptor kinase required for directional cell division during the development of plant vascular tissue. Drought stress usually affects plant stem cell division and differentiation thereby limiting plant growth. However, the role of PXY in cambial activities of woody plants under drought stress is unclear. In this study, we analyzed the biological functions of two PXY genes (PagPXYa and PagPXYb) in poplar growth and development and in response to drought stress in a hybrid poplar Populus alba × P. glandulosa '84K'. Expression analysis indicated that PagPXYs, similar to their orthologs PtrPXYs in Populus trichocarpa, are mainly expressed in the stem vascular system, and related to drought. Interestingly, overexpression of PagPXYa and PagPXYb in poplar did not have a significant impact on the growth status of transgenic plants under normal condition. However, when treated with 8% PEG6000 or 100mM H2O2, PagPXYa and PagPXYb overexpressing lines consistently exhibited more cambium cell layers, fewer xylem cell layers, and enhanced drought tolerance compared to the non-transgenic control '84K'. In addition, PagPXYs can alleviate the damage caused by H2O2 to the cambium under drought stress, thereby maintaining the cambial division activity of poplar under drought stress, indicating that PagPXYs play an important role in plant resistance to drought stress. This study provides a new insight for further research on the balance of growth and drought tolerance in forest trees.

3.
Int J Biol Macromol ; : 131844, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38663708

RESUMEN

Starch is a key element in fried potato crisps, however, the effect of starch granule size on oil absorption of the product have yet to be fully investigated. The study explored the impact of starch granule size on both the dough characteristics and oil absorption in potato crisps. The dough composed of small-sized potato granules showed more compact and uniform network system. Additionally, X-ray Microscope analysis showed that potato crisps prepared with small-sized potato granules had limited matrix expansion and fewer pores, cracks, and voids. The small-sized potato and small-sized wheat granule addition crisps displayed a significantly greater average cell thickness (52.05 and 53.44 µm) than other samples, while exhibiting notably lower average porosity (61.37 % and 60.28 %) compared to other samples. Results revealed that potato crisps with medium and small potato granules had 12.91 % and 21.92 % lower oil content than those containing large potato starch. Potato crisps with B-type wheat starch showed 16.36 % less oil absorption than those with A-type wheat starch. Small-sized starches significantly influence the dough structure and contribute to the reduction of oil absorption in fried products. The generated insights may provide monitoring indexes for cultivating potato varieties with low oil absorption.

4.
Cell Rep ; 43(4): 114077, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38592974

RESUMEN

Enhancer-derived RNAs (eRNAs) play critical roles in diverse biological processes by facilitating their target gene expression. However, the abundance and function of eRNAs in early embryos are not clear. Here, we present a comprehensive eRNA atlas by systematically integrating publicly available datasets of mouse early embryos. We characterize the transcriptional and regulatory network of eRNAs and show that different embryo developmental stages have distinct eRNA expression and regulatory profiles. Paternal eRNAs are activated asymmetrically during zygotic genome activation (ZGA). Moreover, we identify an eRNA, MZGAe1, which plays an important function in regulating mouse ZGA and early embryo development. MZGAe1 knockdown leads to a developmental block from 2-cell embryo to blastocyst. We create an online data portal, M2ED2, to query and visualize eRNA expression and regulation. Our study thus provides a systematic landscape of eRNA and reveals the important role of eRNAs in regulating mouse early embryo development.


Asunto(s)
Desarrollo Embrionario , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Animales , Desarrollo Embrionario/genética , Ratones , Elementos de Facilitación Genéticos/genética , ARN/metabolismo , ARN/genética , Femenino , Embrión de Mamíferos/metabolismo , Cigoto/metabolismo , Redes Reguladoras de Genes , Masculino
5.
Org Lett ; 26(16): 3386-3390, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38602481

RESUMEN

A Pd-catalyzed relatively general Michaelis-Arbuzov reaction of triaryl phosphites and aryl iodides for preparing useful aryl phosphonates was developed. Interestingly, water can greatly facilitate the reaction through a water-participating phosphonium intermediate rearrangement process, which also makes the reaction conditions rather mild. In comparison with the known methods, this reaction is milder and more general, as it exhibits excellent functional group tolerance, can be applied to various triaryl phosphites and aryl iodides, and can be extended to aryl phosphonites and phosphinites. A gram-scale reaction with a low catalyst loading also revealed its practicality and potential in large-scale preparation.

6.
Cureus ; 16(3): e56494, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38638737

RESUMEN

Malignant melanoma with brain metastasis has a high mortality rate. New approaches for diagnosis and treatment are urgently required to improve prognosis. Here we present a 60-year-old male with metastatic melanoma to the brain. Using a transcriptomics pipeline, we analyzed whole blood and resected tumor tissue, identifying enriched gene expression biomarkers and pathways - including seven upregulated ( BRAF, CDK4, EIF1AX, IK, NRAS, PIK3R2, and TP53) and 11 downregulated (CASP8, CDK10, CDKN2A, CTLA4, GNA11, HERC2, IRF4, MC1R, PLA2G6, RREB1, and TPCN2) genes in the blood (across 15 pathways), showing 14% enrichment, and 16 upregulated (CCND1, CDK4, CTLA4, EIF1AX, IK, IRF4, MITF, NRAS, PIK3CB, PIK3R2, PMEL, RREB1, SLC45A2, SOX10, TYR, and TYRP1) and three downregulated ( GNA11, KITLG, and PLA2G6) genes in tissue (across 17 pathways), showing 33% enrichment, with five shared markers and 12 shared pathways. The model connected CDK4 pathway overactivity observed in both samples to inhibitors like ribociclib, abemaciclib, and palbociclib as putative treatments. By enabling objective personalized therapy selection, this approach shows great promise for advancing patient outcomes.

7.
BMC Genomics ; 25(1): 388, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649808

RESUMEN

BACKGROUND: Myxozoa is a class of cnidarian parasites that encompasses over 2,400 species. Phylogenetic relationships among myxozoans remain highly debated, owing to both a lack of informative morphological characters and a shortage of molecular markers. Mitochondrial (mt) genomes are a common marker in phylogeny and biogeography. However, only five complete myxozoan mt genomes have been sequenced: four belonging to two closely related genera, Enteromyxum and Kudoa, and one from the genus Myxobolus. Interestingly, while cytochrome oxidase genes could be identified in Enteromyxum and Kudoa, no such genes were found in Myxobolus squamalis, and another member of the Myxobolidae (Henneguya salminicola) was found to have lost its entire mt genome. To evaluate the utility of mt genomes to reconstruct myxozoan relationships and to understand if the loss of cytochrome oxidase genes is a characteristic of myxobolids, we sequenced the mt genome of five myxozoans (Myxobolus wulii, M. honghuensis, M. shantungensis, Thelohanellus kitauei and, Sphaeromyxa zaharoni) using Illumina and Oxford Nanopore platforms. RESULTS: Unlike Enteromyxum, which possesses a partitioned mt genome, the five mt genomes were encoded on single circular chromosomes. An mt plasmid was found in M. wulii, as described previously in Kudoa iwatai. In all new myxozoan genomes, five protein-coding genes (cob, cox1, cox2, nad1, and nad5) and two rRNAs (rnl and rns) were recognized, but no tRNA. We found that Myxobolus and Thelohanellus species shared unidentified reading frames, supporting the view that these mt open reading frames are functional. Our phylogenetic reconstructions based on the five conserved mt genes agree with previously published trees based on the 18S rRNA gene. CONCLUSIONS: Our results suggest that the loss of cytochrome oxidase genes is not a characteristic of all myxobolids, the ancestral myxozoan mt genome was likely encoded on a single circular chromosome, and mt plasmids exist in a few lineages. Our findings indicate that myxozoan mt sequences are poor markers for reconstructing myxozoan phylogenetic relationships because of their fast-evolutionary rates and the abundance of repeated elements, which complicates assembly.


Asunto(s)
Evolución Molecular , Genoma Mitocondrial , Myxozoa , Filogenia , Animales , Myxozoa/genética , Myxozoa/clasificación , Complejo IV de Transporte de Electrones/genética
8.
Chem Commun (Camb) ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38668748

RESUMEN

A photoredox-catalyzed alkylarylation of activated alkenes via a radical C-C bond cleavage/Truce-Smiles rearrangement cascade is developed. The protocol features mild and redox-neutral conditions, broad substrate scope and excellent functional group compatibility, providing a facile and efficient approach to the long-chain distal keto-amides with all-carbon quaternary centers at the alpha position.

9.
Circ Res ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639105

RESUMEN

BACKGROUND: The precise origin of newly formed ACTA2+ (alpha smooth muscle actin-positive) cells appearing in nonmuscularized vessels in the context of pulmonary hypertension is still debatable although it is believed that they predominantly derive from preexisting vascular smooth muscle cells (VSMCs). METHODS: Gli1Cre-ERT2; tdTomatoflox mice were used to lineage trace GLI1+ (glioma-associated oncogene homolog 1-positive) cells in the context of pulmonary hypertension using 2 independent models of vascular remodeling and reverse remodeling: hypoxia and cigarette smoke exposure. Hemodynamic measurements, right ventricular hypertrophy assessment, flow cytometry, and histological analysis of thick lung sections followed by state-of-the-art 3-dimensional reconstruction and quantification using Imaris software were used to investigate the contribution of GLI1+ cells to neomuscularization of the pulmonary vasculature. RESULTS: The data show that GLI1+ cells are abundant around distal, nonmuscularized vessels during steady state, and this lineage contributes to around 50% of newly formed ACTA2+ cells around these normally nonmuscularized vessels. During reverse remodeling, cells derived from the GLI1+ lineage are largely cleared in parallel to the reversal of muscularization. Partial ablation of GLI1+ cells greatly prevented vascular remodeling in response to hypoxia and attenuated the increase in right ventricular systolic pressure and right heart hypertrophy. Single-cell RNA sequencing on sorted lineage-labeled GLI1+ cells revealed an Acta2high fraction of cells with pathways in cancer and MAPK signaling as potential players in reprogramming these cells during vascular remodeling. Analysis of human lung-derived material suggests that GLI1 signaling is overactivated in both group 1 and group 3 pulmonary hypertension and can promote proliferation and myogenic differentiation. CONCLUSIONS: Our data highlight GLI1+ cells as an alternative cellular source of VSMCs in pulmonary hypertension and suggest that these cells and the associated signaling pathways represent an important therapeutic target for further studies.

10.
Environ Sci Technol ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639327

RESUMEN

The development of efficient technologies for the synergistic catalytic elimination of NOx and chlorinated volatile organic compounds (CVOCs) remains challenging. Chlorine species from CVOCs are prone to catalyst poisoning, which increases the degradation temperature of CVOCs and fails to balance the selective catalytic reduction of NOx with the NH3 (NH3-SCR) performance. Herein, synergistic catalytic elimination of NOx and chlorobenzene has been originally demonstrated by using phosphotungstic acid (HPW) as a dechlorination agent to collaborate with CeO2. The conversion of chlorobenzene was over 80% at 270 °C, and the NOx conversion and N2 selectivity reached over 95% at 270-420 °C. HPW not only allowed chlorine species to leave as inorganic chlorine but also enhanced the BroÌ·nsted acidity of CeO2. The NH4+ produced in the NH3-SCR process can effectively promote the dechlorination of chlorobenzene at low temperatures. HPW remained structurally stable in the synergistic reaction, resulting in good water resistance and long-term stability. This work provides a cheaper and more environmentally friendly strategy to address chlorine poisoning in the synergistic reaction and offers new guidance for multipollutant control.

11.
J Neuroimaging ; 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38616297

RESUMEN

BACKGROUND AND PURPOSE: The purpose of this study is to evaluate the feasibility of using 3-dimensional (3D) ultra-short echo time (UTE) radial imaging method for measurement of the permeability of the blood-brain barrier (BBB) to gadolinium-based contrast agent. In this study, we propose to use the golden-angle radial sparse parallel (GRASP) method with 3D center-out trajectories for UTE, hence named as 3D UTE-GRASP. We first examined the feasibility of using 3D UTE-GRASP dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) for differentiating subtle BBB disruptions induced by focused ultrasound (FUS). Then, we examined the BBB permeability changes in Alzheimer's disease (AD) pathology using Alzheimer's disease transgenic mice (5xFAD) at different ages. METHODS: For FUS experiments, we used four Sprague Dawley rats at similar ages where we compared BBB permeability of each rat receiving the FUS sonication with different acoustic power (0.4-1.0 MPa). For AD transgenic mice experiments, we included three 5xFAD mice (6, 12, and 16 months old) and three wild-type mice (4, 8, and 12 months old). RESULTS: The result from FUS experiments showed a progressive increase in BBB permeability with increase of acoustic power (p < .05), demonstrating the sensitivity of DCE-MRI method for detecting subtle changes in BBB disruption. Our AD transgenic mice experiments suggest an early BBB disruption in 5xFAD mice, which is further impaired with aging. CONCLUSION: The results in this study substantiate the feasibility of using the proposed 3D UTE-GRASP method for detecting subtle BBB permeability changes expected in neurodegenerative diseases, such as AD.

12.
Plant Sci ; 344: 112083, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38588982

RESUMEN

Due to the extended generation cycle of trees, the breeding process for forest trees tends to be time-consuming. Genetic engineering has emerged as a viable approach to expedite the genetic breeding of forest trees. However, current genetic engineering techniques employed in forest trees often utilize continuous expression promoters such as CaMV 35S, which may result in unintended consequences by introducing genes into non-target tissues. Therefore, it is imperative to develop specific promoters for forest trees to facilitate targeted and precise design and breeding. In this study, we utilized single-cell RNA-Seq data and co-expression network analysis during wood formation to identify three vascular tissue-specific genes in poplar, PP2-A10, PXY, and VNS07, which are expressed in the phloem, cambium/expanding xylem, and mature xylem, respectively. Subsequently, we cloned the promoters of these three genes from '84K' poplar and constructed them into a vector containing the eyGFPuv visual selection marker, along with the 35S mini enhancer to drive GUS gene expression. Transgenic poplars expressing the ProPagPP2-A10::GUS, ProPagPXY::GUS, and ProPagVNS07::GUS constructs were obtained. To further elucidate the tissue specificity of these promoters, we employed qPCR, histochemical staining, and GUS enzyme activity. Our findings not only establish a solid foundation for the future utilization of these promoters to precisely express of specific functional genes in stems but also provide a novel perspective for the modular breeding of forest trees.

13.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1327-1334, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621980

RESUMEN

This study aims to investigate whether baicalin induces ferroptosis in HepG2 cells and decipher the underlying mechanisms based on network pharmacology and cell experiments. HepG2 cells were cultured in vitro and the cell viability was detected by the cell counting kit-8(CCK-8). The transcriptome data of hepatocellular carcinoma were obtained from the Cancer Genome Atlas(TCGA), and the ferroptosis gene data from FerrDb V2. The DEG2 package was used to screen the differentially expressed genes(DEGs), and the common genes between DEGs and ferroptosis genes were selected as the target genes that mediate ferroptosis to regulate hepatocellular carcinoma progression. The functions and structures of the target genes were analyzed by Gene Ontology(GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment with the thresholds of P<0.05 and |log_2(fold change)|>0.5. DCFH-DA probe was used to detect the changes in the levels of cellular reactive oxygen species(ROS) in each group. The reduced glutathione(GSH) assay kit was used to measure the cellular GSH level, and Fe~(2+) assay kit to determine the Fe~(2+) level. Real-time quantitative PCR(RT-PCR) was employed to measure the mRNA levels of glutathione peroxidase 4(GPX4) and solute carrier family 7 member 11(SLC7A11) in each group. Western blot was employed to determine the protein levels of GPX4, SLC7A11, phosphatidylinositol 3-kinase(PI3K), p-PI3K, protein kinase B(Akt), p-Akt, forkhead box protein O3a(FoxO3a), and p-FoxO3a in each group. The results showed that treatment with 200 µmol·L~(-1) baicalin for 48 h significantly inhibited the viability of HepG2 cells. Ferroptosis in hepatocellular carcinoma could be regulated via the PI3K/Akt signaling pathway. The cell experiments showed that baicalin down-regulated the expression of SLC7A11 and GPX4, lowered the GSH level, and increased ROS accumulation and Fe~(2+) production in HepG2 cells. However, ferrostatin-1, an ferroptosis inhibitor, reduced baicalin-induced ROS accumulation, up-regulated the expression of SLC7A11 and GPX4, elevated the GSH level, and decreased PI3K, Akt, and FoxO3a phosphorylation. In summary, baicalin can induce ferroptosis in HepG2 cells by inhibiting the ROS-mediated PI3K/Akt/FoxO3a pathway.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Flavonoides , Neoplasias Hepáticas , Humanos , Proteínas Proto-Oncogénicas c-akt/genética , Fosfatidilinositol 3-Quinasas/genética , Especies Reactivas de Oxígeno , Células Hep G2 , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Transducción de Señal
14.
Ecotoxicol Environ Saf ; 276: 116334, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38626607

RESUMEN

Thioacetamide (TAA) within the liver generates hepatotoxic metabolites that can be induce hepatic fibrosis, similar to the clinical pathological features of chronic human liver disease. The potential protective effect of Albiflorin (ALB), a monoterpenoid glycoside found in Paeonia lactiflora Pall, against hepatic fibrosis was investigated. The mouse hepatic fibrosis model was induced with an intraperitoneal injection of TAA. Hepatic stellate cells (HSCs) were subjected to treatment with transforming growth factor-beta (TGF-ß), while lipopolysaccharide/adenosine triphosphate (LPS/ATP) was added to stimulate mouse peritoneal macrophages (MPMs), leading to the acquisition of conditioned medium. For TAA-treated mice, ALB reduced ALT, AST, HYP levels in serum or liver. The administration of ALB reduced histopathological abnormalities, and significantly regulated the expressions of nuclear receptor-related 1 protein (NURR1) and the P2X purinoceptor 7 receptor (P2×7r) in liver. ALB could suppress HSCs epithelial-mesenchymal transition (EMT), extracellular matrix (ECM) deposition, and pro-inflammatory factor level. ALB also remarkably up-regulated NURR1, inhibited P2×7r signaling pathway, and worked as working as C-DIM12, a NURR1 agonist. Moreover, deficiency of NURR1 in activated HSCs and Kupffer cells weakened the regulatory effect of ALB on P2×7r inhibition. NURR1-mediated inhibition of inflammatory contributed to the regulation of ALB ameliorates TAA-induced hepatic fibrosis, especially based on involving in the crosstalk of HSCs-macrophage. Therefore, ALB plays a significant part in the mitigation of TAA-induced hepatotoxicity this highlights the potential of ALB as a protective intervention for hepatic fibrosis.

15.
Protein Expr Purif ; 219: 106480, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38588871

RESUMEN

Mpox is a zoonotic disease that was once endemic in Africa countries caused by mpox virus. However, cases recently have been confirmed in many non-endemic countries outside of Africa. The rapidly increasing number of confirmed mpox cases poses a threat to the international community. In-depth studies of key viral factors are urgently needed, which will inform the design of multiple antiviral agents. Mpox virus A41L gene encodes a secreted protein, A41, that is nonessential for viral replication, but could affect the host response to infection via interacting with chemokines. Here, mpox virus A41 protein was expressed in Sf9 cells, and purified by affinity chromatography followed by gel filtration. Surface plasmon resonance spectroscopy showed that purified A41 binds a certain human chemokine CXCL8 with the equilibrium dissociation constant (KD) being 1.22 × 10-6 M. The crystal structure of mpox virus A41 protein was solved at 1.92 Å. Structural analysis and comparison revealed that mpox virus A41 protein adopts a characteristic ß-sheet topology, showing minor differences with that of vaccinia virus. These preliminary structural and functional studies of A41 protein from mpox virus will help us better understand its role in chemokine subversion, and contributing to the knowledge to viral chemokine binding proteins.

16.
Eur J Pharmacol ; 971: 176552, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38580181

RESUMEN

AIM OF THE STUDY: Chronic cholestasis leads to liver fibrosis, which lacks effective treatment. In this study, we investigated the role and mechanisms of action of loureirin B (LB) in cholestatic liver fibrosis. MATERIALS AND METHODS: Bile duct ligation (BDL)-induced hepatic fibrosis mice were used as in vivo models. Transforming growth factor-ß1 (TGF-ß1)-pretreated HSC-T6 cells were used to explore the mechanism by which LB attenuates liver fibrosis in vitro. RNA sequencing, quantitative PCR (qPCR), western blotting, immunohistochemistry and immunofluorescence were performed to detect the fibrosis markers and measure autophagy levels. Flow cytometry, cell counting kit-8 (CCK-8) assay, and 5'-ethynyl-2'-deoxyuridine (EdU) assay were conducted to detect cell proliferation and viability. GFP-RFP-LC3 adenovirus, autophagy-related protein 7 (ATG7) siRNA, and bafilomycin A1 (BafA1) were used to verify autophagic flux. RESULTS: Our results showed that LB ameliorates liver injury, inhibits collagen deposition, and decreases the expressions of fibrosis-related markers in BDL-induced mouse livers. In vitro, we found that LB inhibited proliferation and migration, promoted apoptosis, and inhibited the activation of HSC-T6 cells pretreated with TGF-ß1. RNA sequencing analysis of HSC-T6 cells showed that LB treatment predominantly targeted autophagy-related pathways. Further protein analysis indicated that LB downregulated the expression of phosphorylated AKT (p-AKT) and phosphorylated mTOR (p-mTOR), and upregulated LC3-II, p62, and ATG7 both in vivo and in vitro. Intriguingly, ATG7 inactivation reversed the antifibrotic effects of LB on HSC-T6 cells. CONCLUSIONS: LB can improve BDL-induced liver fibrosis by inhibiting the activation and proliferation of HSCs and is expected to be a promising antifibrotic drug.


Asunto(s)
Colestasis , Proteínas Proto-Oncogénicas c-akt , Resinas de Plantas , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo , Células Estrelladas Hepáticas , Cirrosis Hepática/inducido químicamente , Serina-Treonina Quinasas TOR/metabolismo , Hígado/metabolismo , Autofagia , Colestasis/patología
17.
PLoS One ; 19(4): e0301327, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38626143

RESUMEN

BACKGROUND: There is a correlation between obesity and 25-hydroxyvitamin D (25OHD) that tends to be negative. However, this relationship varies among different races. In this study, Asian adults with and without obesity were compared in terms of their levels of 25OHD. METHODS: We carried out a cross-sectional analysis on 2664 non-Hispanic Asian adults who participated in the National Health and Nutrition Examination Survey (NHANES) conducted between 2011 and 2018. To examine the connection between obese status, body mass index (BMI), waist circumference (WC) and weight, and 25OHD, we ran multivariate linear regression models and multivariate logistic regression models. RESULTS: After adjusting for all confounding factors, obesity status shows a significant positive correlation with vitamin D deficiency (model 3: OR = 2.318, 95% CI:1.317, 4.082). This positive correlation remains significant in males (males: OR = 2.713, 95% CI: -13.398, 5.217). In all three models, a negative association was observed between obesity status and 25OHD (model 1: ß = -4.535, 95% CI: -6.987, -2.083; model 2 ß = -4.249, 95% CI: -6.549, -2.039; model 3 ß = -1.734, 95% CI: -7.285, 3.816). After controlling for covariates, there was a significant negative correlation between WC and 25OHD when stratified by gender and obesity status in both males with and without obesity (males with obesity: ß = -1.461, 95% CI: -2.485, -0.436; males without obesity: ß = -0.855. 95% CI: -1.499, -0.210). In males with obesity, there was a very strong positive connection between body weight and 25OHD (ß = 0.912, 95% CI: 0.227, 1.597). In addition, neither gender's obese individuals showed a significant link between BMI and 25OHD. CONCLUSION: This study demonstrated a positive correlation between obesity and vitamin D deficiency and a negative correlation between obesity and 25OHD in Asian American adults. Additionally, among male obese individuals, there was a significant negative correlation between WC and 25OHD, an observation that needs to be validated in further prospective studies.


Asunto(s)
Asiático , Obesidad , Deficiencia de Vitamina D , Vitamina D , Adulto , Humanos , Masculino , Índice de Masa Corporal , Calcifediol , Estudios Transversales , Encuestas Nutricionales , Obesidad/epidemiología , Estudios Prospectivos , Vitamina D/análogos & derivados , Vitamina D/sangre , Deficiencia de Vitamina D/complicaciones , Deficiencia de Vitamina D/epidemiología , Estados Unidos , Femenino
18.
Biofabrication ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565133

RESUMEN

Spinal cord injury (SCI) could cause permanent impairment to motor or sensory functions. Pre-cultured neural stem cell (NSC) hydrogel scaffolds were demonstrated to be a promising approach to treat SCI with anti-inflammatory effect, axon regrowth and motor function restore. Here in this study, we performed coaxial extrusion process to fabricate a core-shell hydrogel microfiber with high NSC density in the core portion. Oxidized hyaluronic acid (OHA), carboxymethyl chitosan (CMC) and Matrigel blend was used as matrix for NSC growth and to facilitate the fabrication process. During in vitro differentiation culture, it is found that NSC microfiber could differentiate into neuron and astrocyte with higher efficiency compared with NSC cultured in petri dishes. Furthermore, during in vivo transplantation, NSC microfibers were coated with poly lactic acid (PLA) nanosheet by electrospinning for reinforcement. The coated NSC nanofibers showed higher anti-inflammatory effect and lesion cavity filling rate compared with control group. Meanwhile, more neuron- and oligodendrocyte-like cells were visualized in lesion epicenter. Finally, axon regrowth across the whole lesion site was observed, demonstrating the microfiber could guide renascent axon regrowth. Experiment results indicate that the NSC microfiber is a promising bioactive treatment for complete SCI treatment with better outcomes. .

19.
Appl Opt ; 63(10): 2429-2435, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38568521

RESUMEN

A multifunction processor for a broadband signal based on the active mode-locking optoelectronic oscillator (OEO) is proposed and experimentally demonstrated. The central frequency down-conversion and frequency spectrum convolution of the target broadband signal (TBS) are realized by just tuning the wavelength of the optical carrier or by the time domain product, respectively. To achieve the central frequency down-conversion of the TBS, an optical tunable delay line (OTDL) is adopted to match the delay time of the OEO loop with the repetition period of the TBS. Then the spectrum convolution of the TBS is produced by just injecting a lower frequency signal consistent with the free spectral range (FSR) of the OEO loop. Moreover, the frequency convolution repetition is also greatly increased by harmonic mode-locking injection. The equivalent bandwidth of the TBS is enlarged by ∼50 times, benefiting from the frequency convolution. The central frequency conversion flexibility and the bandwidth compatibility are also discussed in detail. This work provides a multifunction processor system and may have potential usage in multifunctional integrated radar systems.

20.
Cancer Immunol Res ; : OF1-OF11, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38568775

RESUMEN

Myeloid-derived suppressor cells (MDSC) are a population of heterogeneous immune cells that are involved in precancerous conditions and neoplasms. The autonomic nervous system (ANS), which is composed of the sympathetic nervous system and the parasympathetic nervous system, is an important component of the tumor microenvironment that responds to changes in the internal and external environment mainly through adrenergic and cholinergic signaling. An abnormal increase of autonomic nerve density has been associated with cancer progression. As we discuss in this review, growing evidence indicates that sympathetic and parasympathetic signals directly affect the expansion, mobilization, and redistribution of MDSCs. Dysregulated autonomic signaling recruits MDSCs to form an immunosuppressive microenvironment in chronically inflamed tissues, resulting in abnormal proliferation and differentiation of adult stem cells. The two components of the ANS may also be responsible for the seemingly contradictory behaviors of MDSCs. Elucidating the underlying mechanisms has the potential to provide more insights into the complex roles of MDSCs in tumor development and lay the foundation for the development of novel MDSC-targeted anticancer strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...